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c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2008

Abstract. Over the last decade, computer simulations have become an increasingly important tool to study
proteins. They now regularly complement experimental investigations and often are the only instrument
to probe processes in the cell. Here, we summarize some of the algorithmic advances and review recent
results that exemplify the progress over the last years. Our focus is on the thermodynamics and structure
prediction of proteins, with information on the kinetics and dynamics inferred only indirectly.

PACS. 87.15.Cc Folding and sequence analysis – 87.15.Ak Monte Carlo simulations – 87.15.-v
Biomolecules: structure and physical properties

1 Introduction

Proteins are molecular nanomachines transporting
molecules, catalyzing biochemical reactions, and fighting
infections. A detailed knowledge of protein structure
and function is, therefore, of critical importance for
understanding the molecular machinery of cells. Despite
decades of research, both experimental and theoretical,
the mechanisms of protein folding and interaction are
still only poorly understood. Reliable tools that allow
studies of these phenomena in computer experiments
would open the way to understand the various diseases
that are caused by misfolding of proteins, and enable the
design of novel drugs with customized properties.

From a computational point of view, the difficulties
arise from the complex form of the forces within and be-
tween molecules. Containing both repulsive and attractive
terms these forces lead to a rough energy landscape with
a huge number of local minima. A typical thermal energy
of the order of kBT is much smaller than the energy bar-
riers a protein has to overcome. As a consequence, simple
canonical Monte Carlo or molecular dynamics simulations
get trapped in local minima and normally do not ther-
malize within the available CPU time. Even simulations
of the few existing “mini-proteins” (less than 50 residues)
are computationally hard tasks, and the effective compu-
tational cost increases exponentially with the number of
residues for canonical methods.
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The search for techniques that can overcome this sam-
pling problem in computational protein studies is an ac-
tive area of research. In the following, we describe methods
that sample the high dimensional conformational space of
proteins efficiently. Our focus is on the thermodynamics
and structure prediction of proteins. Together with in-
creasing computer power, which slowly approaches the
petaflop range, these techniques now put first princi-
ple simulations of the thermodynamics of small proteins
within reach. We review some recent results in order to
demonstrate that these improved algorithms allow us to
analyze the folding and aggregation of small proteins in
full detail. Note that by construction our techniques only
allow us to obtain indirect information on the kinetics
and dynamics. With up to 50 residues, these proteins are
small compared to the average size of a cellular protein
(∼ 250 residues). For this reason, we give an outlook how
these methods can be combined with local structure con-
straints to predict the structure of much larger proteins
and summarize some machine learning based algorithms
for calculation of such constraints.

2 Algorithms for protein simulations

Efficient sampling of the conformational space of proteins
requires sampling of low-energy configurations and avoid-
ing to get trapped in local minima. The latter problem is
what renders conventional Monte Carlo as well as molec-
ular dynamics simulations at room temperature so inef-
ficient: the crossing of an energy barrier of height ΔE is
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suppressed by a factor ∝ exp(−ΔE/kBT ) (kB being the
Boltzmann constant and T the temperature of the sys-
tem), and typical barriers are much larger than thermal
energies. One way to achieve faster sampling is to intro-
duce artificial weights that lead to a uniform distribution
of one or more selected physical quantities in a Monte
Carlo or molecular dynamics simulation. For instance, in
multicanonical sampling [1] the weight w(E) is set so that
the distribution of energies, P (E), is given by:

P (E) ∝ n(E)w(E) ≈ const, (1)

where n(E) is the spectral density. In this way, a free
random walk in the energy space is performed that allows
the simulation to escape from any local minimum. The
thermodynamic average of a physical quantity A can now
be calculated by re-weighting [2–4]:

〈A〉T =
∫

dxA(x)w−1(E(x)) e−E(x)/kBT

∫
dxw−1(E(x))e−E(x)/kBT

. (2)

Here, x stands for configurations. Note that the weights
w(E) are not known a priori, and estimators have to be de-
termined. Commonly used are the iterative procedures de-
scribed in references [1,5], an overview of them and other
attempts is given in reference [6].

In a variant of this idea, “energy landscape paving”
(ELP) [7], the search is dynamically steered away from
those parts of the energy landscape that have already been
explored. For this purpose, the energy is modified by a
function of the time-dependent histogram. This function
increases over time while the system stays in a particular
minimum until the weight of the minimum has decreased
sufficiently to escape from it. The system will continue the
search until the next minimum is found.

w(Ẽ) = e−Ẽ/kBT with Ẽ = E + f(H(q, t)). (3)

T is a (low) temperature, Ẽ the generalized time-
dependent energy E, and f(H(q, t)) is a function of
the histogram H(q, t) in a pre-chosen “order parame-
ter” q, e.g., the fraction of native contacts. Eliminating
the time dependence reduces ELP to other generalized-
ensemble methods, for instance to multicanonical sam-
pling for f(H(q, t)) = lnH(E).

In parallel tempering [8,9] — also known as replica
exchange method — first introduced to protein science in
reference [10], standard Monte Carlo or molecular dynam-
ics moves are performed in parallel at different values of
a control parameter, most often the temperature. At cer-
tain times the current conformations of replicas at neigh-
boring temperatures Ti and Tj=i+1 are exchanged with
probability

P (Ci → Cj) = min(1, exp(−βiE(Cj) − βjE(Ci)
+ βiE(Ci) + βjE(Cj))), (4)

with β = 1/kbT . For a given replica the swap moves in-
duce a random walk from low temperatures, where bar-
riers lead to long relaxation times, to high temperatures,

where equilibration is rapid, and back. This random walk
results in a faster convergence at low temperatures.

Even with generalized-ensemble and parallel temper-
ing techniques bottlenecks and barriers can lead to slow re-
laxation. In parallel tempering, convergence can be gauged
by the frequency of statistically independent visits to the
lowest temperature. A lower bound for this number is the
rate of round-trips nrt between the lowest and highest
temperatures, T0 and TN . We define nup(i) (ndn(i)) as
the number of replicas at temperature Ti that came from
T0 (TN ). The fraction of replicas moving up

fup(i) =
nup(i)

nup(i) + ndn(i)
(5)

describes a stationary distribution of probability flow be-
tween temperatures T0 and TN . Trebst et al. [11–13] have
investigated this flow and have provided an iterative
scheme for adjusting the discretization to optimize the
flow distribution. Maximizing the number of round-trips
nrt results in a constant transition probability between
neighboring nodes, and a linear flow distribution among
the nodes [14]:

fopt
up (i) = i/N. (6)

Based on this result an iteration scheme can be devised
for assigning control parameter values to nodes [12,13] il-
lustrated in Figure 2 of reference [13]:

(i) an initial set of control parameters β0 > β1 > ... >
βN−1 > βN , e.g., inverse temperatures, gives rise to
a flow distribution, e.g., fup(0) = 1 ≥ fup(1) ≥ ... ≥
fup(N − 1) ≥ fup(N) = 0;

(ii) their values define a function g[f ], with g[f(i)] = βi,
in particular g[1] = β0 and g[0] = βN , and piecewise
linear interpolation to calculate g(x) for intermediate
values x;

(iii) the new control parameter values are determined
from this function by the relation β′

i = g[1 − i/N ], i =
1, ..., N − 1, keeping β0 and βN fixed.

If the relaxation at a particular temperature is slower
than hopping in temperature, the state space partitions
itself into disjoint free energy basins connected only via
neighboring nodes, forming a tree-like hierarchical net-
work (see Fig. 1). Optimizing the temperature distribu-
tion [13,14] in this case of broken ergodicity leads again
to a linear flow distribution, but the acceptance proba-
bilities are no longer constant. Similarly, one can show
that weights optimizing the flow through order parame-
ter space (for instance, energy) do not lead to a flat dis-
tribution in the case of broken ergodicity [13,14]. These
results are in contrast to previous approaches based on
an analysis of replica exchange acceptance rates [15–18].
They allow in addition an analytical expression of the op-
timal number of replicas in parallel tempering [19] and
optimized replica exchange move sets for molecular dy-
namics [20] that go beyond the techniques previously em-
ployed [21].

The random walk of replicas is not restricted to one in
temperatures. For instance, in “model hopping” [22] the
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Fig. 1. (Color online) Sketch of broken ergodicity in a par-
allel tempering; for certain nodes (temperatures) the system
partitions into several disjoint free energy wells. Flow among
temperatures is necessary (blue) to obtain relaxation between
the various free energy wells (e.g. red).

system performs a random work through an ensemble of
energy functions. This allows to exchange information be-
tween different levels of coarse graining or various local en-
vironments. As a variant of parallel tempering (see above),
“model hopping” employs N non-interacting copies of the
molecule. Standard Monte Carlo or molecular dynamics
moves are used for the evolution of the configurations,
but the probability for the exchange of two neighboring
copies is calculated as

P (Ci → Cj) = min(1, exp{−β [EA(Cj) + aiEB(Cj)
+EA(Ci) + ajEB(Ci) − EA(Ci)
−aiEB(Ci) − EA(Cj) − ajEB(Cj)]})

= min(1, exp(βΔaΔEB)). (7)

with Δa = aj−ai and ΔEB = EB(Cj)−EB(Ci). The ran-
dom walk of the configurations is performed on a ladder of
models with a1 = 1 > a2 > a3 > . . . > aN that differ by
the relative contribution of EB to the total energy E of the
molecule. The van der Waals repulsion between close or
even overlapping atoms frequently leads to high barriers
in the energy landscape of proteins [23]. Hence, we have
considered an implementation of “model hopping” with
decreasing contributions from the van der Waals energy.
With “model hopping” the (non-physical) model at one
end of the ladder (at aN << 1) may allow atoms to share
the same position in space thereby “tunneling” through an
energy barrier. Hence, at the “physical” end of the ladder
(at a1 = 1) the sampling of low-energy configurations is
increased. Using this technique we were able to “predict”
the structure of protein A by an all-atom simulation with
an accuracy of 3.2 Å rmsd [22]. For a comparison with
other methods see also, for instance, references [24–28].
Model hopping also allows guiding a simulation by infor-
mation obtained from homologous structures [29]. Such
spatial constraints can introduce an additional roughness
into the energy landscape and often leads to extremely

slow convergence of the simulation. This problem is cir-
cumvented in model hopping through a random walk in
an ensemble of replicas that differ by the strength with
that the constraints are coupled to the system.

3 Parallel implementation of a force field

With generalized-ensemble sampling, replica exchange
techniques and related methods the numerical effort in
simulations of small proteins is expected to increase no
longer exponentially with number of residues, but only
with a power law. Under optimal circumstances, the com-
putational effort in generalized-ensemble algorithms scales
∝ X̂2 where X̂ is the range in the ensemble coordinate X .
For instance, in the multicanonical algorithm, this coor-
dinate is the potential energy X = E. Since E ∝ N2, the
computational effort increases in multicanonical simula-
tions with the number of residues at least as ≈ N4 [30].
This scaling clearly limits the size of proteins and protein
complexes that can be studied. Hence, the above described
simulation techniques need to be implemented in software
that utilizes efficiently the computational power of a few
thousand processors commonly available in today’s super-
computers. An example is the protein simulation package
SMMP [31–33], which the authors now run regularly on
4096 processors of the IBM BlueGene/L JUBL installed
at the Jülich Supercomputing Centre (JSC).

Our investigation into strategies for parallelization of
force fields have focused on ECEPP/3 [34] defined by

EECEPP/3 = EC + ELJ + EHB + ETor

=
∑

(i,j)

332qiqj

εrij

+
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r12
ij
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ij

)

+
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r12
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ij

)

+
∑

l

Ul(1 ± cos(nlξl)) , (8)

where rij is the distance between atoms i and j, qi is the
charge of atom i, ε is the dielectric constant, ξl and nl

are the torsional angle of chemical bond l and its respec-
tive multiplicity, and Aij , Bij , Cij , Dij , Ul are parameters
that have been derived from experimental structures. The
protein-water interaction is approximated by a solvent ac-
cessible surface term

Esolv =
∑

i

σiAi . (9)

The sum goes over the solvent accessible areas Ai of all
atoms i weighted by solvation parameters σi as determined
in [35], a common choice when the ECEPP/3 force field is
utilized. Note that Esolv is a rather crude approximation
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of the interaction between the polypeptide and the sur-
rounding water motivated by the low computational costs
compared to simulations with explicit water molecules.
The energy EECEPP/3 from equation (8) involves sums
over all atom pairs since the definition of the ECEPP/3
force field does not include any cutoffs plus a sum over the
dihedral angles in the protein. Each term in these sums
can be calculated independently. In SMMP, each atom is
associated with a dihedral angle. This makes it natural
to use a loop over the dihedral angles as outermost loop
in the implementation of the energy calculation and dis-
tribute the work across processors based on the number of
interactions associated with each dihedral angle. The sol-
vent energy term Esolv in equation (9), on the other hand,
is defined by adjacency relations in space and calculated
by dividing up space into boxes and distributing the work
based on the spatial grid.

We ran our benchmark on 4 different platforms: JUMP,
an IBM p690 cluster with 32 processors and 112 GB of
shared memory per node; JUBL, an IBM BlueGene/L
with 8 racks and a total of 16384 Power 4 processor at
700 MHz; JULI a PC cluster using dual-core PowerPC
970 MP processors at 2.5 GHz with an InfiniPath net-
work, and NICOLE, an Opteron based PC cluster with a
clock speed of 2.4 GHz using Infiniband networking. Ex-
cept for the setup of the communicators used for the en-
ergy calculation on BG/L, we used the same source code
for all measurements. We performed 50 sweeps of a Monte
Carlo simulation of the designed protein TOP7 [36] start-
ing from a stretched chain. Data was written to disk every
10 sweeps. On JUBL, we used multiple replicas in parallel
with the indicated number of processors per replica to fill
a half plane (512 processors).

Using a single processor, the fastest system in the test
(JULI, 18 min) finished the benchmark more than 6 times
faster than JUBL (2 h). Using the maximum number of
processors that still lead to an increase in speed, JUMP
becomes the fastest system finishing the calculation in 80 s
using 64 processors almost 3.5 times faster than JUBL us-
ing 64 processors per replica as well. For the PC clusters
scaling breaks down before reaching 64 processors as the
overhead due to communication becomes too large. On all
of our test systems, the speedup is much better for the cal-
culation of EECEPP/3 than the speedup of the calculation
of the solvent energy.

To run multiple replicas in parallel, we divide the pro-
cessors into groups with each group responsible for the
energy calculation of a single replica. The number of repli-
cas is only limited by the number of available processors.
Because of that, the low cost per processor makes Blue-
Gene/L an attractive platform for protein simulations.
With the large number of processors available on JUBL,
we can run simulations with 64 replicas at a quarter of the
cost and at the same speed as on JUMP.

4 Folding of small proteins

Modern simulation techniques together with experimental
advances have led to a unified picture of protein folding

as a stochastic process in a high dimensional energy land-
scape. The native 3D structure of a given protein is the
global minimum of free energy at physiological tempera-
tures. Each molecule finds a path to fold into the native
state, sampling only a small part of the astronomically
large conformation space [37–41]. Recent evaluations of
protein energy landscapes are reported, for instance, in
references [42–45].

Following the experimental observation of a correla-
tion between the topological complexity of the native state
and the folding rates of a wide variety of proteins [46], it
is widely believed that the final structure determines the
rate and mechanism of the folding transition. The more
complex the native structure of a protein is the slower it
folds. In reference [46], this complexity was captured by
the “relative contact order” of a protein, which is the av-
erage sequence separation between residues in contact in
the native state, normalized by the chain length. Proteins
with mostly helical structures have small contact orders
whereas complex β-sheet structures can have relatively
high contact orders. The observed correlation between rel-
ative contact order and folding rates persists over 6 orders
of magnitude in the folding rates. A further indication of
the importance of the native state topology comes from
the observation that diverse proteins with similar struc-
tures, but little sequence similarity, have comparable fold-
ing rates [47].

Another experimental measurable used to characterise
the process of protein folding is the distribution of struc-
tures in the so called transition state [48]. This is the state
through which the protein has to pass from the unfolded
state with high entropy to the native state with low en-
tropy and energy. The distribution of structures in transi-
tion states can be deduced from the effect of site specific
mutations on the folding rate (see also [49], and refer-
ences therein). Mutations to residues which contribute to
crucial stabilizing structures in the transition state have
large effects on the folding rate, whereas mutations at sites
which are disordered in the transition state have little ef-
fect. Structures in the transition state ensemble are insen-
sitive to large differences in the sequences, if the native
topologies are similar [49]. Note however that there are
many examples of proteins with similar structures, some-
times even of similar sequences, that fold using different
pathways [50].

Consistent with the expectation that small contact
orders mean simple folding pathways and faster folding,
most successful atomistic folding simulations have been for
helical proteins. Using completely unrestrained all-atom
molecular dynamics simulations with the AMBER force
field, folding of the 20 residue helical peptide 1L2Y (trp
cage) was reproduced in detail [51]. In our own computa-
tional studies, we have found that small helical proteins
(such as the 23 residue 1RIJ) indeed exhibit simple funnel
like folding free-energy landscapes [52]. The helix hydro-
gen bonds form in no particular order, although the two
ends of a helix show greater tendency to dissolve and re-
form.
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Fig. 2. (Color online) Left: The non-trivial unexpected pathway for the folding of the molecule CFr revealed in the simulations.
Right: The free-energy minimum structure seen in all-atom simulations (coloured) superimposed on the experimentally measured
structure (gray).

On average, β-sheet structures have larger contact or-
der, and correspondingly fold slower. Among these, β-
hairpins are the simplest, as the hydrogen bonded residues
are close in sequence. Many simulations of small peptides
exist that fold into β-hairpins, for instance (not a compre-
hensive list!), references [53–56]. These studies have shown
two main folding mechanisms. For the 9 residue β-hairpin
peptide YQNPDGSQA, explicit water molecular dynam-
ics simulations with the AMBER force field showed fold-
ing is initiated by interactions between the two arms of
the hairpin before the backbone hydrogen bonds stabi-
lize the structure [56]. For the 3-stranded β-sheet beta3s,
folding proceeds in a zipper mechanism from the turns to-
wards the ends of the hairpins [52]. The folding of the two
β-hairpins is more cooperative than the folding of helices,
and once formed, the β-sheets show a greater resilience to-
wards unfolding. While simulations based on Monte Carlo
methods do not allow a direct temporal interpretation
of the observed folding trajectories, qualitative inferences
can be drawn from the data. For the same length of the
peptides, it is our experience that a much greater number
of independent folding events are observed for helical pep-
tides compared to β-sheets of the same size in the same to-
tal Monte Carlo time. This indicates that structures with
small contact order are more easily available, consistent
with the experiments.

Proteins with both helix and β-sheet elements pose
a special challenge to all-atom sequence based models.
The simplest examples have a structure with a helix and
a β-hairpin. We have examined two such systems and
found distinct folding mechanisms. The 23 residue BBA5
molecule has a small β-hairpin where the turn region
is stabilized by a synthetic amino acid D-proline. This
hairpin and the helix of BBA5 form on their own, and
only later make hydrophobic contacts [52]. The protein
FSD-EY has a similar hairpin structure, however, the hy-
drophobic residues of the helix line up on one side, pro-
viding a template around which the hairpin forms [57].
The hairpin of FSD-EY never forms independently of the
helix in our simulations, nor is there any clear evidence of
a zipper like mechanism.

The formation of structures with non-local β-sheet
contacts are highly non-trivial. While one part of the
chain is synthesized it can not find its binding partner
before that part is also synthesized. In the meantime
there is a danger that the first-formed β-strand interacts
with nearby molecules leading to potentially harmful ag-
gregates of incompletely folded proteins. We have done
extensive folding simulations of one such molecule, the
C-terminal fragment CFr (PDB id: 2 GJH) of the designed
93 residue protein Top7 (PDB id: 1 QYS). The protein
folds to about 1.8 Å backbone rmsd from the native state
in all-atom parallel tempering Monte Carlo simulations
starting from random initial conformations. The contact
order of CFr puts it near the region of intermediate con-
tact orders in the contact order vs. fold rate plot [46,49].
Along the sequence from N- to C-terminus, the secondary
structure profile of the molecule CFr is: strand – helix –
strand – strand (see Fig. 2). The two strands at the C-
terminus make a β-hairpin. The strands at the N- and C-
termini are also adjacent in the 3 stranded β-sheet. None
of the simple folding mechanisms discussed above could
give rise to this arrangement.

Our simulations revealed an unanticipated mechanism
(see Fig. 2) for folding of this structure [58]. The N-
terminal β-strand first folds into a non-native extension of
the native helix. The β-hairpin at the C-terminus forms
independently. When the helix and the C-terminal hairpin
make the correct tertiary contacts, the non-native part of
the helix unfolds to release the N-terminal residues. These
subsequently form β-sheet contacts with the hairpin and
complete the native structure. By “caching” the residues
of the N-terminal β-strand as a non-native extension of
a helix, the molecule protects them from premature con-
tacts with other regions with strong β-strand propensi-
ties that would lead to misfolding or very slow folding.
The caching of the N-terminal strand, accelerates folding
of CFr by avoiding many misfolded states. We speculate
that this is a common mechanism in molecules where ad-
jacent strands in a β-sheet have large sequence separation.
It can also protect a nascent N-terminal β-strand which
is synthesized early, from intermolecular interactions that
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could lead to aggregation, until the rest of the molecule is
synthesized and properly folded.

The folding of CFr brings the possible role of non-
native interactions in protein folding into focus. Exper-
imental [59–61] as well as computational studies with
simplified models [62,63] have indicated the presence of
non-native α-helical structures early in the folding process
of predominantly β-sheet proteins. The simulations of CFr
provide a detailed picture of how such non-native interac-
tions [64] might arise spontaneously and channel the fold-
ing pathway. They indicate that some proteins with large
contact order fold faster than other with similar complex-
ity by utilizing an accelerating mechanism such as caching
mechanism. This might be a cause of the large fluctuations
observed in the contact order vs. fold rate plot in refer-
ence [46], in the mid-contact order proteins.

An interesting question is whether there are different
distinct transitions in the folding process, and what their
thermal order and relation is. An important example is
the role of side-chain ordering. Generalized ensemble and
parallel tempering methods are well-suited to overcome
the “slowness” of this process observed in previous canon-
ical simulations [65,66]. In recent studies on homopoly-
mers [67,68], a de-coupling of backbone and side-chain
ordering was found for certain amino acids. Important
characteristics of the side chain ordering process do not
depend on the details of the environment, i.e., whether
the molecules are in gas phase or solvent, but solely on
the particular side groups. Side-chain ordering exhibits
a transition-like character, marked by an accompanying
peak in the specific heat. In a related investigation, the
role of charged end groups in stabilizing and de-stabilizing
secondary structures in gas phase was established [69].
These latter results are important for a comparison of
simulations with molecular beam experiments of biolog-
ical peptides [70–74].

For the villin headpiece subdomain HP-36 (PDB ID:
1VII), one of the smallest proteins (596 atoms) with
well-defined secondary and tertiary structure [75], our
results indicate a thermal hierarchy of ordering events
with side-chain ordering appearing at temperatures below
the helix-coil transition, i.e., secondary structure forma-
tion, but above the final folding transition to the native
state [76]. We conjecture that side-chain ordering facili-
tates the search for the correct backbone topology. This
assumption is consistent with various computational [77–
79] and experimental [80] studies that also identify the
formation of helical segments as the time limiting factor
in the folding of HP-36.

Simulations of FSD-EY and HP-36 described in this
section were carried out using the SMMP package [33]
and the ECEPP force field [34] described in Section 2 and
aimed also at testing our parallel implementation of the
force field. Simulations of 1RIJ, beta3s, and Top7 CFr
were done with the PROFASI package [81] and the Lund
force field [82]. As in ECEPP, the bond lengths and angles
are fixed in the Lund force field, but simplified interaction
terms are assumed that allow a faster energy calculation
(on single processors): a purely repulsive excluded volume

term, a local backbone electrostatic term, a directional
hydrogen bond term, and a pairwise additive hydrophobic
term to approximate the effects of the solvent.

5 Constraint generation for structure
prediction

Structure prediction is concerned with the search for the
global minimum of a protein folding energy landscape.
Atomistic folding simulations with physics based force
fields for average size proteins (≈ 250 residues) are com-
putationally far beyond the capabilities of even the largest
supercomputers of the day.

For this reason, most structure prediction methods
successful in blind tests such as CASP [83] are based on
non-physical approaches. Several methods use fragments
of native structures to assemble native like trial struc-
tures. These are either selected from large libraries of
short representative fragments [84] or from those parts
of template structures that can be aligned to the tar-
get sequence [85]. Often, knowledge-based potentials are
used where propensities, derived from statistics of native
structures, are translated into pseudo energies by means of
Boltzmann’s law [86,87]. These pseudo energy landscapes
can be explored with similar search techniques as those
described above for physical energies [88]. The so sampled
structures can be evaluated in a second step by physics-
based potentials [89].

A common strategy to reduce the conformational
search space is the use of constraints derived from the
experimental structures of related proteins. The low and
decreasing rate of novel folds among newly resolved struc-
tures suggests that the protein fold space explored by na-
ture is limited to a few thousand classes [90] and there is
evidence that the 45 000 entries of the protein data bank
(PDB) contain a structural representative for almost every
fold on the single domain level [91]. It is thus likely that
for any given target sequence a suitable structure template
is available. Successful fold recognition, i.e., identifying
the structure templates that best fit the target sequence
and sequence-structure alignment are thus essential pre-
requisites to derive useful template based constraints. For
smaller proteins it has recently been shown that a biased
Monte Carlo move which updates a dihedral angle pair to
the cluster centers of a database derived dihedral angle
statistics can significantly accelerate the conformational
search [92].

Long range distance constraints, i.e., prediction of po-
sitions close in structure but far apart in sequence, can
be derived from fold recognition or correlated mutation
analysis. As these constraints have a rather low accuracy,
and errors are more likely to lead to frustrated confor-
mations, local constraints are preferred. The most-widely
used prediction algorithms generate local constraints from
secondary structure. Usually they predict the member-
ship of a protein residue to one of 3 classes: α-helix,
β-sheet or coil, where coil is simply defined as absence
of both α-helix and β-sheet. Although algorithms like
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PSIPRED [93] achieve an accuracy beyond 75%, map-
ping of these classes to dihedral angle constraints is not
straightforward as most programs use the secondary struc-
ture definition of the program DSSP [94] as a reference.
DSSP however defines secondary structure classes in terms
of H-bond patterns and thus largely ignores dihedral an-
gles. As a consequence only for about half of the residues,
i.e., those located in the non-terminal parts of helices and
beta strands, a direct mapping to a narrow region in the
dihedral space is possible.

An alternative strategy is the direct prediction of di-
hedral angle values for each residue [95–97]. For instance,
DHPRED predicts for each residue its dihedral angle re-
gion [97]. Although this prediction is again a 3-class clas-
sification it provides dihedral information independent of
an H-bond centered definition. As most coil residues are
members of the alpha or beta dihedral angle region (only
7% of all residues lie outside), the number of informative
constraints is much higher. The algorithm has a three layer
structure and is based on classification by Support-Vector-
Machines (SVM) [98], a supervised machine learning algo-
rithm. The first layer uses the sequence profile information
from a PSI-BLAST alignment to obtain an initial dihedral
angle region prediction for each residue. In the second
layer this initial classification is added to the sequence
profile information for an iterative update of the dihe-
dral angle region predictions. After convergence a nearest
neighbor heuristics is applied in the last layer to resolve
remaining ambiguities. The performance of DHPRED is
comparable to PSIPRED and provides a direct mapping
to dihedral angles. In addition the dihedral angle regions
for many coil residues can be identified thus providing lo-
cal dihedral constraints for the entire protein chain. An
extension of these ideas is the program BETTY [99] that
classifies 88% of all β-residues correctly as parts of a paral-
lel anti-parallel β-sheet. Combined with PSIPRED, 79.3%
of all residues can be correctly classified by BETTY into
parallel-β, anti-parallel-β, α-helix, and coil.

6 Conclusions

Progress in hardware and algorithm development now
allow the physics based simulation of biological macro-
molecules. For small proteins atomistic simulation of the
entire folding process has become possible. The thermody-
namics of the protein folding process can be revealed and
used for explanation of experimental observations from
first principles. The increasing accuracy of sequence based
prediction methods to obtain local structural constraints
suggests a growing range of applications for biased simu-
lations in structure prediction.

This work was supported in part by the National Institutes of
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